A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids.

نویسندگان

  • Lotta K Stenman
  • Reetta Holma
  • Ariane Eggert
  • Riitta Korpela
چکیده

Impairment of gut barrier is associated with a fat-rich diet, but mechanisms are unknown. We have earlier shown that dietary fat modifies fecal bile acids in mice, decreasing the proportion of ursodeoxycholic acid (UDCA) vs. deoxycholic acid (DCA). To clarify the potential role of bile acids in fat-induced barrier dysfunction, we here investigated how physiological concentrations of DCA and UDCA affect barrier function in mouse intestinal tissue. Bile acid experiments were conducted in vitro in Ussing chambers using 4- and 20-kDa FITC-labeled dextrans. Epithelial integrity and inflammation were assayed by histology and Western blot analysis for cyclooxygenase-2. LPS was studied in DCA-induced barrier dysfunction. Finally, we investigated in a 10-wk in vivo feeding trial in mice the barrier-disrupting effect of a diet containing 0.1% DCA. DCA disrupted epithelial integrity dose dependently at 1-3 mM, which correspond to physiological concentrations on a high-fat diet. Low-fat diet-related concentrations of DCA had no effect. In vivo, the DCA-containing diet increased intestinal permeability 1.5-fold compared with control (P = 0.016). Hematoxylin-eosin staining showed a clear disruption of the epithelial barrier by 3 mM DCA in vitro. A short-term treatment by DCA did not increase cyclooxygenase-2 content in colon preparations. UDCA did not affect barrier function itself, but it ameliorated DCA-induced barrier disruption at a 0.6 mM concentration. LPS had no significant effect on barrier function at 0.5-4.5 μg/ml concentrations. We suggest a novel mechanism for barrier dysfunction on a high-fat diet involving the effect of hydrophobic luminal bile acids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sealing the ducts

The transitional epithelium lining the ducts of various glands such as salivary and mammary glands, and organs such as liver, pancreas, kidney and lung must bear a permeability barrier as they are in direct contact with the hostile environment in the lumen. The barrier function of pancreatic ductal epithelium is essential for preventing the back flux of proteases, lipases and DNAases from the p...

متن کامل

Lactobacillus casei Shirota Supplementation Does Not Restore Gut Microbiota Composition and Gut Barrier in Metabolic Syndrome: A Randomized Pilot Study

UNLABELLED Metabolic syndrome is associated with disturbances in gut microbiota composition. We aimed to investigate the effect of Lactobacillus casei Shirota (LcS) on gut microbiota composition, gut barrier integrity, intestinal inflammation and serum bile acid profile in metabolic syndrome. In a single-centre, prospective, randomised controlled pilot study, 28 subjects with metabolic syndrome...

متن کامل

Attenuation by l-thyroxine of oxidant-induced gut epithelial damage

Objective(s): Severe injuries are often associated with tissue hypothyroidism, elevated damaging mediators in circulation, and broken gut epithelial barrier.  However, the relationships between the hypothyroid state and gut epithelial damage are largely unknown.  Therefore, in this study, we investigated the effects of L-thyroxine (T4) on in vitro models of intact and ...

متن کامل

Duodenal bile acids in infants with protracted diarrhoea.

Bile acids were estimated in the duodenum of infants with protracted diarrhoea and compared with those in a control group. Significantly lower levels of total bile acids were found in infants with protracted diarrhoea, a finding which may be due to ileal dysfunction. Low concentrations of total bile acids may contribute to the poor nutritional state of these patients by impairing the normal dig...

متن کامل

Erratum for Kang et al., “Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet”

Metabolic endotoxemia originating from dysbiotic gut microbiota has been identified as a primary mediator for triggering the chronic low-grade inflammation (CLGI) responsible for the development of obesity. Capsaicin (CAP) is the major pungent bioactivator in chili peppers and has potent anti-obesity functions, yet the mechanisms linking this effect to gut microbiota remain obscure. Here we sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 304 3  شماره 

صفحات  -

تاریخ انتشار 2013